PIT

传统方法中,提高LLMs性能需要通过人工注释来收集更多多样化和高质量的训练数据,但这是一项资源密集型的任务,尤其是对于专业领域言。为了解决这个问题,来自伊利诺伊大学厄巴纳-香槟分校和Google的研究人员提出了“ImplicitSelf-Improvementframework”。通过从人类偏好数据中学习改进目标,PIT解决了传统提示方法的限制,并展示了在各种数据集和条件下提高LLMs响应质量的有效性。...

特别声明:本页面标签名称与页面内容,系网站系统为资讯内容分类自动生成,仅提供资讯内容索引使用,旨在方便用户索引相关资讯报道。如标签名称涉及商标信息,请访问商标品牌官方了解详情,请勿以本站标签页面内容为参考信息,本站与可能出现的商标名称信息不存在任何关联关系,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任。(反馈错误)

推荐关键词

最新资讯

24小时热搜

查看更多内容

大家正在看