站长之家- 传媒 2021-05-31T15:42:12 +08:00

百融云创积极探索联邦学习技术 保护和规范金融数据使用

       “十三五”以来,伴随新一代信息技术的快速演进,推动数字经济不断发展壮大,使得消费互联、产业互联与金融服务更紧密结合,线上化、数字化、智能化的“非接触服务”逐渐普及。特别是在新冠肺炎疫情倒逼之下,我国金融业积极谋变,数字化转型进程明显加快。提升金融行业的科技水平,增强金融普惠性,是“十四五”期间金融发展的方向。

       联邦学习是基于数据隐私保护的安全计算框架,是一系列技术实现的统称,为机器学习、深度学习、迁移学习算法提供安全计算支持。能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下进行数据使用和机器学习建模,降低了传统中心化机器学习带来的隐私泄露风险和因数据泄露带来的相应成本。

       百融云创作为国内领先的人工智能与大数据应用平台,利用“联邦学习”创新性地设计了一种新的人工智能实现模式,承接了传统人工智能解决问题的能力。更为重要的是,“联邦学习”为我们开创了一种面向数据隐私保护的机器学习新范式,且在这种新的框架下,“联邦学习”各参与方通过“联邦学习”机制实现了多赢的局面,也为金融行业人工智能技术的应用提供了一种新的应用前景。

       百融云创将保护隐私的原则、理念和方法融入到企业管理中,始终将保护客户和个人隐私信息放在首位。为了解决存在的数据隐私保护这一难题,打破数据孤岛的现实困难,满足数据联合融合使用的迫切需要,百融云创也在业内号召并率先探索“联邦学习”模式。这是一种加密的分布式机器学习技术,能够使各个企业的自由数据在不出本地的情况下,通过加密机制交换数据,即在不违反数据隐私法规的前提下,建立虚拟共有模型,仅为本地目标服务。

       百融云创探索的“联邦学习”模式,不仅可以增加行业内可用数据的总量,解决现存数据孤岛的问题;而且对金融机构而言,使用联邦学习能简单、合法且低成本的获取外部有效的数据信息,快速解决某些因数据量或数据维度不足而导致的困扰,并且不会造成合作机构间数据或商业机密的泄露。

       规范数据使用可以在汇聚更多数据的基础上迎来价值挖掘的下一个爆发点,带动 AI 的数据基础设施进步,隐私计算未来会逐步成为 AI 的基础设施。未来,百融云创将立足行业需求,扎根技术创新,不断更新和优化技术含量和服务质量,为客户提供更放心和满意的科技服务。


推荐关键词

24小时热搜

查看更多内容

大家正在看