站长之家用户 - 传媒 2021-12-30 15:41

火山引擎Jeddak联邦学习平台通过中国信通院联邦学习安全专项评测

2021 年 12 月 21 日,由中国信息通信研究院(简称“中国信通院”)等单位主办的数据安全产业峰会成功召开。在会议现场,中国信通院公布了第十三批大数据产品能力测评结果,字节跳动安全研究团队推出的"火山引擎Jeddak联邦学习平台",作为参加评测的六个联邦学习产品之一,通过了中国信通院的“联邦学习安全专项评测”。

“联邦学习安全专项评测”以中国信通院《基于联邦学习的隐私计算产品安全测试标准》为依据,从算法安全、AI安全、密码安全、通信安全、存储安全、软件安全等六大方面对考核平台进行严格详尽的测评。该测评对于评判和规范隐私计算商业产品的服务安全水平、降低隐私泄漏风险等,具有重要指导意义。火山引擎Jeddak联邦学习平台成功通过了专项 50 余项评测,取得了全部通过的优秀成绩。

Jeddak项目由字节跳动安全研究团队研发,旨在打造面向数据完整生命周期的数据安全与隐私保护平台。Jeddak联邦学习平台作为旗下重要产品之一,融合了多方安全计算MPC、全同态加密FHE、差分隐私DP、可信计算TEE等多种技术,辅以高性能服务支持架构,针对企业互通、云-端协同等场景提供了安全、可靠、高效的联邦数据共享方案,满足数据“可用不可见”的需求,助力实现数据价值的发挥。平台集成了丰富的数据处理、特征工程以及多种联邦学习算法,支持可视化界面建模,提升了用户建模体验。

火山引擎Jeddak联邦学习平台注重前沿技术的融通创新、致力攻克本领域安全与能效的主要瓶颈,立足先进技术突破制约联邦学习发展的关键阻碍。比如:面向中间结果汇聚的隐私保护,结合MPC技术实现数据分片的匿名化,从而避免各参与方的数据泄露;在数据样本对齐阶段,跨越传统密码学解决手段,转而应用软硬结合的TEE技术和OPRF等最新方案,得以适配不同场景需求,安全高效地实现隐私数据求交;在数据密文计算阶段,突破了常规采用的Paillier半同态加密方式,创新研发基于全同态加密FHE、且支持GPU加速的全新解决方案,在速度和带宽等能效方面带来数量级的提升;在联合建模阶段,研发了基于DP的伪随机置换决策树算法,以及消息压缩的高效同态加密方案,使得建模整体性能提升了 10 至 100 倍;最后,在数据交互和发布过程中,亦充分利用DP技术防止用户隐私泄漏。

当前,火山引擎Jeddak联邦学习平台在不同业务中得到了应用。例如在某电商场景中,平台自研的基于分布式架构差分隐私化的分裂神经网络模型,在保障数据安全前提下,在一小时内完成了千万级用户、万级稀疏特征维度、十亿级参数规模的训练迭代,最终模型为客户带来了10%的ROI提升。平台同时支持私有化部署方式,能够为政务、能源、医疗等行业的联合分析、联合建模、共享发布等需求提供完善的支持。

字节跳动安全研究团队致力于隐私计算领域的前沿技术研究与应用,同时和南京大学、德国慕尼黑工业大学、南方科技大学等顶尖研究机构保持密切的产学研交流合作,共同探索数据安全与隐私保护领域的先进技术与实践,不断完善和打磨产品服务,为推动满足安全与隐私合规的数据流通、促进数据作为生产要素充分发挥价值而持续贡献力量。

相关话题

特别声明:以上内容(如有图片或视频亦包括在内)均为站长传媒平台用户上传并发布,文章为企业广告宣传内容,本平台仅提供信息存储服务,对本页面内容所引致的错误、不确或遗漏,概不负任何法律责任,相关信息仅供参考。任何单位或个人认为本页面内容可能涉嫌侵犯其知识产权或存在不实内容时,可及时向站长之家提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明(点击查看反馈联系地址)。本网站在收到上述法律文件后,将会依法依规核实信息,沟通删除相关内容或断开相关链接。

推荐关键词

24小时热搜

查看更多内容

大家正在看